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Demand Modeling Using Discrete Choice Analysis – Part 2 

 
 

Motivation 
Previously, we presented a method for modeling choices 
using utility theory, where each alternative j in a set has 
a utility value uij to each individual i, and individuals 
choose the alternative with highest utility. In random 
utility, u is composed of a deterministic, observable 
component v, and an unobserved stochastic error 
component ε.  
 
Standard assumptions about the error terms are that they 
follow a joint normal distribution, the probit model, or 
iid double exponential distributions, the logit model. The 
logit model is often sufficient, and it is easier to work 
with; however, it is important to be aware of its 
limitations, including the IIA property.  
 
The observable component of utility v is taken to be a 
function of the price p and characteristics z of the 
product. The form of this function is assumed, and the 
parameters (β coefficients) are estimated using 
maximum likelihood techniques on observed choice 
data. Once these coefficients have been found, the model 
can be used to predict choices in new situations, 
including new products or changes to existing products. 
 
In the previous example we used an assumed functional 
form for v established by experts. In this document we 
will answer: In general, how does one know what 
functional form to use, and what kind of functional form 
for v should be assumed when there is no prior 
knowledge about the relationship between p, v, and z?  

Functional Forms for the Observable 
Component of Utility v 
We said vij is observable in that it is a function of the 
observable characteristics of the product, the individual, 
and the purchase situation that provide information 
about probable choice. We have limited our discussion 
so that vj depends only on the characteristics of the 
product, i.e., all individuals have the same observable 
component of utility, individual differences are 
described only by the random error term, and the index i 
is dropped. The value of the product characteristics of 
product j are written as the real-valued vector zj, and vj is 
a function of zj as well as the product’s price pj, which is 
not included in zj. 

 
Just as in regression, we do not know, in general, the 
functional form relating zj and pj to vj; however, if we have 
experience with choice models and experience in the 
problem domain, we may be able to posit reasonable 
functional relationships that produce good predictions. 
Previously, we used a model developed by researchers 
Boyd and Mellman (1977) defining a functional 
relationship for vehicles including price pj, gas mileage zj1, 
and performance measured as time to accelerate from 0-60 
mph zj2, among other characteristics. Their model 
proposed that  
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where β0, β1, and β2 are coefficients obtained using 
maximum likelihood techniques on observed choice data. 
However, in general we may not have good intuition about 
what functional forms to assume for a particular product 
and set of product characteristics. One method is to simply 
try different functional forms and see which one results in 
the highest likelihood value. However, this can be 
dangerous in the absence of information about the problem 
because more general forms (say, assuming a quadratic  
rather than linear relationship) will always yield higher 
likelihood than more restrictive forms; however, one must 
be wary of overfitting the data. So, in general, this might 
be a reasonable technique for testing whether the price 
relationship is linear or log, it is not a good idea to blindly 
test arbitrary functional form assumptions and pick the 
highest likelihood result. 
 

Discretization of the Product 
Characteristics z and Price p 
A more general technique is to divide the relevant range of 
each product characteristic in z and price p into discrete 
levels, capture the preference coefficients β at those 
discrete levels, and then interpolate for intermediate 
values. This allows the model to capture a wide variety of 
shapes with respect to the real-valued product 
characteristics z and price p. For example, the graph below 
shows a hypothetical case where the underlying 
relationship between v and a single product characteristic z 
is s-shaped. If we descretize z and obtain preference 
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estimates at the discrete levels (shown as circles), we can 
interpolate the s-shaped curve. However, if we assume 
that v is a linear, quadratic, or log function of z, then we 
obtain a more restrictive estimate that does not capture 
all of the detail.  

v  as a function of z
Spline
Linear / Quadratic
Log

 
This technique of discretizing and interpolating may not 
be feasible using data from the market, since we may not 
be able to describe existing market products in terms of a 
small number of discrete levels of each characteristic. 
However, if we are collecting choice data using a 
designed survey, it is feasible and often desirable. 
 
First, we divide each product characteristic z into 
discrete levels that span the relevant domain of 
characteristic values. If the product characteristics are 
indexed by ζ, we divide each characteristic zζ into levels 
indexed by ω = {1, 2, 3, ..., Ωζ}. For example, 
characteristic ζ=1 is fuel economy, and if fuel economy 
z1 ranges between say 10 mpg and 40 mpg, we might set 
levels at 10, 20, 30, and 40 mph, so that Ω1=4, and ω = 
{1, 2, 3, 4} refers to {10mpg, 20mpg, 30mpg, 40mpg} 
respectively. 
 
Each product in the choice set must be coded with 
respect to these characteristic levels using dummy 
variables. Here we notate the dummy variables as δjζω, 
where δjζω = 1 if product characteristic ζ of product j is at 
level ω, and δjζω = 0 otherwise. We also include price in 
this set, with price indexed as ζ=0. Thus, any product j 
with product characteristics and price at the discrete 
levels can be coded as a set of 1’s and 0’s in δjζω ∀ζ,ω. 
Assuming that preferences are linear in the discretized 
set, we have 
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where the coefficients βζω are called part-worths because 
they describe the component of utility derived from 
characteristic ζ being at level ω. There may be cases where 
linearity of the characteristics cannot be assumed because 
of interaction effects, i.e., the shape of preferences for one 
characteristic may depend on the value of another 
characteristic. However, we leave these as advanced cases 
which we do not address here. 
 
Using the logit model, the probability of an individual 
choosing product j is then:  
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and the log likelihood that a model with part-worth 
coefficients βζω will reproduce the observed data Φij, where 
Φij=1 if individual i chooses product j, and Φij=0 
otherwise, is 
 

lnij j
j i

LL P= Φ∑∑  (4)  

 
as derived before, where Pj is given in Eq.(3). Given a set 
of observed choice data Φij we can find the coefficients βζω 
that maximize Eq.(4). 

Example 
In the vehicle example from the previous lesson, we had 
 

 A B C D 
pj ($1000s) 15 15 20 20 
zj1 (mpg) 25 35 25 35 
zj2 (sec) 6 8 8 6 
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Where levels are defined as 
 

ζ symbol level ω=1 level ω=2 
0 p $15,000 $20,000 
1 z1 25 35 
2 z2 6 8 

 
The corresponding dummy variables δjζω  for these 
products are 
 

  j=A j=B j=C j=D 
ζ=0 ω=1 1 1 0 0 
ζ=0 ω=2 0 0 1 1 
ζ=1 ω=1 1 0 1 0 
ζ=1 ω=2 0 1 0 1 
ζ=2 ω=1 1 0 0 1 
ζ=2 ω=2 0 1 1 0 

 
As before, given this choice set suppose that 25 
respondents choose product A, 30 choose product B, 5 
choose product C, and 40 choose product D. If the log 
likelihood in Eq.(4) is maximized using Excel Solver, 
the resulting βζω part-worths are: 
 

βζω ζ=0 ζ=1 ζ=2 
ω=1 0.3304 -0.56544 0.47428 
ω=2 -0.3304 0.56544 -0.47428 

 
MODEL IDENTIFICATION: Actually, there are 
infinitely many sets of part worth coefficients that 
predict equivalent choice probabilities, and the results 
shown above are just one such set. This is because our 
model for v has extra degrees of freedom: i.e., there are 
more variables than equations in the system of 
equations. Any of the sets of betas that yield equivalent 
choice probabilities and log likelihood values are 
equivalent with respect to the choice model, and any can 
be used. If we wish to restrict the model to a single 
answer (this is called model identification), we can code 
Eq.(2) in terms of fewer variables (1 + Σζ (Ωζ-1) 
variables are needed), or we can add extra constraints to 
restrict the solution to a particular set of beta values from 
the infinite set of equivalent values for easier 
interpretation. The solution shown above is the particular 
beta solution maximizing Eq.(4) where the average β 
value of each characteristic ζ across all of its levels ω is 
zero. 
 

The resulting beta values are plotted below for each 
characteristic and price. Each ζ is divided into only two 
levels, so we can use linear interpolation to estimate β 
values for intermediate levels, for example, a price of 
$18,000. 
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By including only two levels per ζ, the resulting 
interpolation shown in the graphs is linear with respect to 
the real-valued characteristics, and we have essentially 
assumed a linear relationship. The final interpolated 
relationship for intermediate values of v, using linear 
interpolation, is 
 

1 2ˆ 0.132 0.113 0.474j j j jv p z z= − + −  (5)  

 
We see that the slope of the part worth for price (0.3304 – 
(-0.3304))/($20-$15) = 0.132 is the same value we 
obtained in the previous lesson when we had assumed a 
linear functional form of p. The slopes of z1 and z2 are 
different than the previous lesson because here we have 
only two levels, which implies a linear relationship, 
whereas the functional form assumed previously was 
inversely proportional to each. So, using only two levels 
for each ζ is not recommended unless the modeler is 
relatively certain that the relationship is nearly linear, or 
that a linear representation will suffice. Use of more than 
two levels allows more general spline interpolation, and 
can represent more complex relationships. 

Interpolation of Part-Worth 
Coefficients Using Splines 
In general, a spline can be fit through the part worth values 
βζω of all levels ω in each ζ to interpolate intermediate 
values of ζ. It is possible to use many types of splines to 
interpolate the points; however, to facilitate optimization 
over the real-valued product characteristic values, it is 
desirable to interpolate using a spline function that is 
smooth and continuous over the domain. In particular, we 
will focus on natural cubic splines: a set of (Ωζ–1) cubic 
polynomials, each of which has a domain between two 
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adjacent levels ω (one between ω=1 and ω=2, another 
between ω=2 and ω=3, etc), that: 

1. Match the value βζω at each of the two domain 
endpoints ω, 

2. Match the first and second derivatives of the 
adjacent cubic polynomial at each domain 
endpoint 

3. Have second derivatives of zero at the extreme 
bounds of the spline: ω=1 and ω=Ωζ. 

 
An illustration is shown below with Ωζ=4 four levels for 
hypothetical characteristic z: 

1 2 3 4z

3 2
1 1 1 1a z b z c z d+ + +

3 2
2 2 2 2a z b z c z d+ + +

3 2
3 3 3 3a z b z c z d+ + +

 
It is possible to calculate the coefficients of the (Ωζ–1) 
cubic polynomials in a spline for characteristic ζ given 
βζω by solving a system of equations representing the 
three conditions; however, we refrain from this detail 
here. Instead, software packages such as Excel or Matlab 
can be used to automatically calculate cubic splines 
given values for βζω. We will notate the cubic spline 
function for characteristic (or price) ζ that passes through 
the levels ω of βζω as Ψζ. The interpolated observable 
component of utility then involves the resulting spline 
function evaluated at the intermediate, real-valued 
product characteristics and price: 
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This interpolated value of v can then be used in the logit 
model to predict the choice probabilities of new products 
with intermediate product characteristic and price values. 

Example 
Suppose that we had included more levels in our earlier 
example 
 

ζ symbol level ω=1 level ω=2 level ω=3 
0 p $15,000 $20,000 $25,000 
1 z1 25 35 45 
2 z2 6 8 10 

 
and the three separate choice sets below were provided to 
survey respondents, and their choices were recorded for 
each choice set.  
 

Choice 
set  A B C None

 pj ($1000s) 15 20 25 - 
1 zj1 (mpg) 25 35 45 - 
 zj2 (sec) 6 10 6 - 
 pj ($1000s) 15 20 25 - 

2 zj1 (mpg) 35 45 25 - 
 zj2 (sec) 8 6 10 - 
 pj ($1000s) 15 20 25 - 

3 zj1 (mpg) 45 25 35 - 
 zj2 (sec) 10 8 6 - 

 
Suppose 100 people were given this survey and the 
number of people choosing each option in each set is given 
by: 
 

Choice 
set A B C None Total
1 45 5 45 5 100 
2 40 55 0 5 100 
3 30 25 30 15 100 

 
Given these data, the partworths (centered around zero for 
each characteristic, as before) can be calculated as 
 

ζ symbol level ω=1 level ω=2 level ω=3 
0 p 0.64 -0.03 -0.61
1 z1 -0.67 -0.07 0.74
2 z2 0.74 0.57 -1.32

 
with the no-choice option utility value of -1.829. 
Interpolating a spline through the levels of price and each 
characteristic would enable estimate of the part worth of 
an intermediate level. 
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HOMEWORK: 
 
1. Show that the logit model is sensitive only to 

relative values of utility, not absolute values of 
utility. What, if anything, does it mean for a utility 
value in this model to be negative? 

2. Using the model obtained in the original four-car 
example in Part 1, what is the predicted probability 
of choosing cars A, B, C, and D?  How well do these 
predictions match the data? 

3. Imagine that a fifth vehicle E was added to the mix 
with characteristics pE = $17,000, zj1 = 30 mpg, and 
zj2 = 7 seconds. What is the predicted probability of 
choosing cars A, B, C, D, and E? 

4. Suppose that in the original vehicle example from 
part 1 we had observed that 30 people chose product 
A, 45 chose product B, 5 chose product C, and 25 
chose product D. Estimate β1, β2, and β3 using 
maximum likelihood. Compare these coefficients to 
those obtained in the example. What are the 
differences? What do these differences mean? Are 
these differences reflective of the data? 
 

 
 

 
 
 
 
 
 
 
 
 


